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Abstract

The route to chaos in a ¯uid layer heated from below is investigated by using the weak non-linear theory as well
as Adomian's decomposition method to solve a system of ordinary di�erential equations which result from a
truncated Galerkin representation of the governing equations. This representation yields the familiar Lorenz
equations. While the weak non-linear method of solution provides signi®cant insight to the problem, to its solution

and corresponding bifurcations and other transitions, it is limited because of its local domain of validity, which in
the present case is in the neighbourhood of any one (but only one) of the two steady state convective solutions. This
method is expected to loose accuracy and gradually breakdown as one moves away from this neighbourhood. On

the other hand, Adomian's decomposition method provides an analytical solution to the problem in terms of an
in®nite power series. The practical need to evaluate numerical values from the in®nite power series, the consequent
series truncation, and the practical procedure to accomplish this task transform the otherwise analytical results into

a computational solution achieved up to a ®nite accuracy. The transition from the steady solution to chaos is
analysed by using both methods and their results are compared, showing a very good agreement in the
neighbourhood of the convective steady solutions. The analysis explains the computational results, which indicate a
transition from steady convection to chaos via a solitary limit cycle followed by a homoclinic explosion at a

subcritical value of a Rayleigh number. A transient analysis of the amplitude equation obtained from the weak non-
linear solution reveals the mechanism by which the Hopf bifurcation becomes subcritical. A simple explanation of
the well-known experimental phenomenon of hysteresis in the transition from steady convection to chaos and

backwards from chaos to steady state is provided in terms of the present analysis results. # 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The investigation of free convection in a ¯uid layer

heated from below is receiving extensive attention due

to its wide ®eld of applications in di�erent disciplines

such as atmospheric sciences, oceanography and engin-

eering.

There are di�erent approaches to analyse the non-

linear convection problem leading to di�erent degrees

of insight into the variety of phenomena and the corre-

sponding dynamics of the system as the Rayleigh num-

ber increases. One such approach was adopted by

Lorenz [1] (see also [2,3]). While the truncated Lorenz

equations are limited either to moderate Rayleigh
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numbers or to represent the solution in the interior,

excluding boundary layers which develop at high
values of Ra, Malkus [4] showed that this set of three

equations decouple from the rest (with exact closure),

at least in the sense of weighted residuals.

In the present paper the same model is adopted to

present the solution analytically by using Adomian's

decomposition method [5,6]. The resulting solutions

are an in®nite power series which needs to be trun-

cated in order to evaluate their numerical values. This
truncation linked to a practical procedure for evaluat-

ing these solutions at speci®c values of time leads to

steady, periodic and chaotic ¯ow regimes. In particular

it is noticed that the transition to chaos when the in-

itial conditions are not too far away from any one of

the convective steady state solutions passes through a

limit cycle at a particular subcritical value of the

Rayleigh number. Here the term `subcritical' is used in
the context of the transition from steady convection to

a non-periodic state, typically referred to as chaotic,

and the critical value of the Rayleigh number is the

value at which this transition to chaos is predicted by

the linear stability analysis of the convective steady

state solutions. Similar results were presented by

Vadasz and Olek [7] for the corresponding problem of

gravity driven convection in porous media and by

Vadasz and Olek [8] for centrifugally induced convec-

tion in a rotating porous layer. In particular the com-

Nomenclature

eÃx unit vector in the x-direction
eÃy unit vector in the y-direction
eÃz unit vector in the z-direction

eÃg unit vector in the direction of gravity
eÃn unit vector normal to the boundary, positive

outwards

g� gravity acceleration
H� the height of the layer
p reduced pressure (dimensionless)

Pr Prandtl number, equals n�/a�
V dimensionless velocity vector equals ueÃx+

veÃy+weÃz
r absolute value of the complex amplitude

r0 initial condition of r
R scaled Rayleigh number, equals Ra/Rac
Rt transitional value of R, corresponding to the

transition from steady convection to chaos,
de®ned by Eq. (42)

R0 critical value of R for the loss of linear stab-

ility of the steady convection solution
Ra Rayleigh number, equals b�DTcg�H

3
�/a�n�

Rac critical value of Rayleigh number for the loss

of linear stability of the motionless solution
Ra0 critical value of Rayleigh number for the loss

of linear stability of the steady convection sol-
ution

tÃ time
T dimensionless temperature, equals (T�ÿTC)/

(THÿTC)

TC coldest wall temperature
TH hottest wall temperature
u horizontal x component of the velocity

v horizontal y component of the velocity
w vertical component of the velocity
x horizontal length co-ordinate
X rescaled amplitude AÄ11, Eq. (10)

y horizontal width co-ordinate
Y rescaled amplitude BÄ11, Eq. (10)
z vertical co-ordinate

Z rescaled amplitude BÄ02, Eq. (10).

Greek symbols
a� thermal di�usivity

b relaxation time parameter in Eq. (34)
bT dimensionless form of the thermal expansion

coe�cient
b� thermal expansion coe�cient

DTc characteristic temperature di�erence
e asymptotic expansion parameter, de®ned in

the text following Eq. (16)
_y higher-order frequency correction
n� ¯uid's kinematic viscosity
x a parameter in Eq. (36), equals e 2/j
r density, dimensionless
r0 reference value of density, dimensional
t long time scale
j coe�cient of the non-linear term in the ampli-

tude equation (34)
w a parameter in Eq. (36), equals j/b
c stream function.

Subscripts
c characteristic values
cr critical values
C related to the coldest wall

H related to the hottest wall
t transitional values
� dimensional values.

Superscripts
� complex conjugate.
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putational recovery of a periodic solution (limit cycle)

at a particular subcritical value of the Rayleigh num-
ber followed immediately by chaos, is in apparent con-
trast to available weak non-linear analysis results [9,10]

of the Lorenz equations which suggest that such a
limit cycle solution is unstable. Wang et al. [9] and
Yuen and Bau [10], while presenting methods of con-

trolling chaos and rendering a subcritical Hopf bifur-
cation supercritical, respectively, in a thermal

convection loop, also present a summary of the
sequence of transitions in the Lorenz system leading to
chaos. In particular they identify a well-known exper-

imental and numerical phenomenon of hysteresis
which can be described as follows: when increasing the

Rayleigh number gradually by approaching the critical
value from below the transition to chaos occurs at
Ra=Ra0, while repeating the same procedure but

approaching Ra0 from above the transition from chaos
to the stationary solution occurs at a value of
Ra< Ra0. Sparrow [2] shows that for the Lorenz sys-

tem analysed around the origin (i.e. around the sol-
ution corresponding to the motionless state) the

transition to chaos is via a homoclinic explosion. He
then makes the reasonable deduction that the homo-
clinic orbit, which exists just at the point where the sol-

ution orbiting around one steady solution turns
towards the other steady solution, belongs to the sub-
critical Hopf bifurcation which was obtained at

Ra=Ra0 (the two steady solutions correspond to the
two branches of the pitchfork bifurcation obtained at

the ®rst transition from a motionless state to convec-
tion and consist of convection cells rotating clockwise
or counter-clockwise).

The objective of the present paper is to extend the
above mentioned analyses and report additional results

of non-linear solutions to this problem obtained via
the weak non-linear analysis around the steady convec-
tive states and via the Adomian's decomposition

method [5,6]. Similar solutions are presented by
Vadasz [11] for convection in a porous layer heated
from below. In particular these results provide an ex-

planation for the computational recovery of the un-
stable limit cycle solution at a subcritical value of the

Rayleigh number on the threshold of the transition to
chaos and a simple explanation of the hysteresis
phenomenon linked to the transition from steady con-

vection to chaos and backwards to steady convection.
This is accomplished ®rst by undertaking a weak

non-linear analysis leading to a complex amplitude
equation which is being analysed to identify further
details related to the subcritical Hopf bifurcation.

Thereafter, the solution to the problem is obtained by
adopting Adomian's decomposition method [5,6] to
solve the set of ordinary di�erential equations.

Although the solution to the problem using this
method is analytical, the evaluation of the resulting in-

®nite series, including the series truncation is a compu-
tational procedure. We will, therefore, refer to the

results obtained via the weak non-linear analysis as
analytical (though local) and to the results obtained
via the Adomian's decomposition method as compu-
tation (as distinct from numerical) to stress the fact

that the latter are also obtained from an analytical sol-
ution which needed to be computed up to a ®nite accu-
racy.

Adomian's decomposition method was shown to
provide extremely accurate results for a wide range of
non-linear problems (see [12,13]), some of which have

closed form analytical solutions and the comparison
between the decomposition method and the known
analytical (or alternatively numerical) results as pre-

sented by Olek [12,13] agreed up to 14 signi®cant
digits.

2. Problem formulation

A very long and narrow ¯uid layer subject to gravity
and heated from below, as presented in Fig. 1, is con-
sidered. A Cartesian co-ordinate system is used such

that the vertical axis z is collinear with gravity, i.e.
eÃg=ÿeÃz. A linear relationship between density and
temperature is assumed and can be presented in the
following dimensionless form r=1ÿbTT, where

bT=b�(THÿTC) and b� represents the dimensional ther-
mal expansion coe�cient while (THÿTC) is the tem-
perature di�erence between the hot and cold walls of

the ¯uid layer. The Boussinesq approximation is
applied indicating that density variations are neglected
everywhere except for the gravity term in the momen-

tum equation. Subject to these conditions the following
dimensionless set of governing equations is obtained

r � V � 0 �1�

1

Pr

�
@

@ t̂
� V � r

�
V � ÿrp� r2V � Ra TÃez �2�

Fig. 1. A ¯uid layer subject to gravity and heated from below.
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@T

@ t̂
� V � rT � r2T �3�

Eqs. (1)±(3) are presented in a dimensionless form.
The values a�/H�, r0a

2
�/H

2
�, and DTc=(THÿTC) are

used to scale the velocity components (u�, v�, w�),
reduced pressure ( p�), and temperature variations
(T�ÿTC), respectively, where a� is the thermal di�usiv-
ity and r0 is a reference value of density. The height of

the layer H� was used for scaling the variables x�, y�,
z� and H 2

�/a� for scaling the time t�. Accordingly,
x=x�/H�, y=y�/H� and z=z�/H� and tÃ=t�a�/H

2
�. In

Eq. (2) Pr=n�/a� is the Prandtl number and Ra is the
Rayleigh number de®ned in the form Ra=b�DTcg�H

3
�/

a�n�.
We consider the horizontal boundaries to be stress

free (i.e. no tangential shear stress), hence, the solution
must follow the impermeability conditions V�eÃn=0 and

the stress free conditions @u/@z=@v/@z=@2w/@z 2=0 on
these boundaries, where eÃn is a unit vector normal to
the boundary. The temperature boundary conditions
are: T = 1 at z = 0, T = 0 at z = 1.

For convective rolls having axes parallel to the
shorter dimension (i.e. y ) v= 0, and the governing
equations can be presented in terms of a stream func-

tion de®ned by u=ÿ@c/@z and w=@c/@x, which upon
applying the curl(H�) operator on Eq. (2) yields the
following system of partial di�erential equations from

Eqs. (1)±(3)�
1

Pr

�
@

@ t̂
� @c
@z

@

@x
ÿ @c
@x

@

@z

�
ÿ r2

�
r2c � Ra

@T

@x
�4�

@T

@ t̂
ÿ @c
@z

@T

@x
� @c
@x

@T

@z
� @ 2T

@x 2
� @

2T

@z2
�5�

where the two-dimensional Laplacian operator is
de®ned in the form H20@2/@x 2+@2/@z 2 and the

boundary conditions for the stream function are
c=@c/@z = 0 on the horizontal boundaries.
The set of partial di�erential equations (4) and (5)

form a non-linear coupled system which together with

the corresponding boundary conditions accepts a basic
motionless conduction solution. To obtain the com-
plete solution to the non-linear coupled system of par-

tial di�erential equations (4) and (5) we represent the
stream function and temperature in the form

c � A11�t̂� sin�kx� sin�pz� �6�

T � 1ÿ z� B11�t̂� cos�kx� sin�pz� � B02�t̂� sin�2pz� �7�

This representation is equivalent to a Galerkin expan-

sion of the solution in both x and z directions, trun-
cated when i+j = 2, where i is the Galerkin
summation index in the x-direction and j is the

Galerkin summation index in the z-direction.
Substituting (6) and (7) into the Eqs. (4) and (5), mul-

tiplying the equations by the orthogonal eigenfunctions
corresponding to (6) and (7) and integrating them over
the height of the domain and over the wavelength of

the convection cell in the vertical and horizontal direc-
tions, respectively, i.e. fp/k0 dxf10 dz( ), yields a set of
three ordinary di�erential equations for the time evol-

ution of the amplitudes in the form

d ~A11

dt
� Pr� ~B11 ÿ ~A11� �8a�

d ~B11

dt
� ÿ ~B11 � R ~A11 ÿ ~A11

~B02 �8b�

d ~B02

dt
� ÿl ~B02 � ~A11

~B11 �8c�

where the time, the amplitudes and the Rayleigh num-
ber were rescaled and the following notation was intro-

duced

~A11 � �k=krc�
��k=kcr�2 � 2�A11; ~B11 � kcrRB11;

~B02 � pRB02; R � Ra

Rac

�9a�

t � �k2 � p2�t̂; l � 8

��k=kcr�2 � 2� ;

Rac � �k
2 � p2�3
k2

; kcr � p���
2
p

�9b�

Eqs. 8(a±c) are the famous Lorenz equations [1,2],
which yield the following convective stationary sol-
utions AÄ11=BÄ11=2 [l(R ÿ 1)]1/2, BÄ02=(R ÿ 1).
Rescaling the equations again with respect to their

convective ®xed points in the form

X �
~A11������������������

l�Rÿ 1�p Y �
~B11������������������

l�Rÿ 1�p Z �
~B02

�Rÿ 1� �10�

provides the following set of scaled equations

_X � Pr�Yÿ X � �11�

_Y � RXÿ Yÿ �Rÿ 1�XZ �12�

_Z � l�XYÿ Z � �13�

where the dots (
.
) denote time derivatives d( )/dt. By

using the wavenumber corresponding to the convection
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threshold, i.e. kcr, in the de®nitions of l and Rac [Eq.
(9)] yields l=8/3 and Rac=27p 4/4.

3. Weak non-linear analysis Ð local solution

Before we proceed to present the global solution to
the problem, a weak non-linear analysis of the system
(11)±(13) is undertaken, which emphasises analytically

some local aspects of the solution around the convec-
tion ®xed points and provides insight and simple expla-
nations to the computational results presented in the

following section.

3.1. The asymptotic expansion and amplitude equation

The stationary (®xed) points of the system (11)±(13)
are the convective solutions XS=YS=21, ZS=1 and
the motionless solution XS=YS=ZS=0 (occasionally

referred to as the origin). The expansion around the
motionless stationary solution yields the familiar
results of a pitchfork bifurcation from a motionless

state to convection at R= 1. We expand now the
dependent variables around the convection stationary
points in a form similar to Yuen and Bau [10]

X � XS � eX1 � e2X2 � e3X3 � � � � �14�

Y � YS � eY1 � e2Y2 � e3Y3 � � � � �15�

Z � ZS � eZ1 � e2Z2 � e3Z3 � � � � �16�
We also expand R in a ®nite series of the form
R=R0(1+e 2) which now de®nes the small expansion

parameter as e 2=(RÿR0)/R0, where R0 is the value of
R where the stationary convective solutions loose their
stability in the linear sense. Therefore, the present

weak non-linear analysis is expected to be restricted to
initial conditions su�ciently close to any one of the
convective ®xed points. Introducing a long time scale

t=e 2t and replacing the time derivatives in Eqs. (11)±
(13) with d/dt4 d/dt+e 2 d/dt, yields a hierarchy of
ordinary di�erential equations at the di�erent orders.
The leading order provides the stationary solutions,

while at order e we get the familiar homogeneous lin-
earised system

_X1 ÿ Pr�Y1 ÿ X1� � 0 �17�

_Y1 ÿ �X1 ÿ Y13�R0 ÿ 1�Z1� � 0 �18�

_Z1 ÿ l�2X12Y1 ÿ Z1� � 0 �19�

where the2upper or under-sign corresponds to the
selected stationary convective point, either XS=YS=1,

ZS=1 corresponding to the upper-sign, or
XS=YS=ÿ1, ZS=1 corresponding to the under-sign.
The following stages will focus on the solution around

XS=YS=1, ZS=1, hence, the upper-sign holds.
Similar equations hold for the other stationary point.
The solutions to the linear set (17)±(19) have the form:

X1 � a1 eis0t � a�1 eÿis0t;

Y1 � b1 eis0t � b�1 eÿis0t;

Z1 � c1 eis0t � c�1 eÿis0t �20�

where the coe�cients a1(t ), a �1(t ), b1(t ), b �1(t ),
c1(t ) and c �1(t ) are allowed to vary over the long

time scale t and 2is0 are the imaginary parts of the
complex eigenvalues corresponding to the linear system
at marginal stability (i.e. the real part of the eigen-
values is 0). They are related to Pr by the equation

s 2
0=2l Pr(Pr + 1)/(Prÿlÿ1), which can be established

by working out the relationships between the O(e )
coe�cients in the solution (20). These relationships are

obtained by substituting the solutions (20) into the lin-
ear equations (17)±(19) and yield

b1 � �Pr� is0�
Pr

a1; b�1 �
�Prÿ is0�

Pr
a�1 �21�

c1 � s0�s0 ÿ i�Pr� 1��
Pr�R0 ÿ 1� a1;

c�1 �
s0�s0 � i�Pr� 1��

Pr�R0 ÿ 1� a�1 �22�

The equation for R0 is also obtained in the form

R0=Pr(Pr+l+3)/(Prÿlÿ1). For l=8/3 and Pr = 10
the corresponding value of R0 is R0324.737.
At order O(e 2) the equations have the form

_X2 ÿ Pr�Y2 ÿ X2� � 0 �23�

_Y2 ÿ �X2 ÿ Y2 ÿ �R0 ÿ 1�Z2� � ÿ�R0 ÿ 1�X1Z1 �24�

_Z2 ÿ l�X2 � Y2 ÿ Z2� � lX1Y1 �25�

The system (23)±(25) is a non-homogeneous version of
the system (17)±(19), sharing the same homogeneous

operator. Therefore, the homogenous solutions to
(23)±(25) have the same form as Eq. (20) (with di�er-
ent coe�cients) to which the forcing functions on the

right-hand-side of (23)±(250 contribute particular sol-
utions. The complete solution at this order has the
form
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X2 � a2 eis0t � a�2 eÿis0t � a22 ei2s0t � a�22 eÿi2s0t � a20

�26a�

Y2 � b2 eis0t � b�2 eÿis0t � b22 ei2s0t � b�22 eÿi2s0t � b20

�26b�

Z2 � c2 eis0t � c�2 eÿis0t � c22 ei2s0t � c�22 eÿi2s0t � c20

�26c�
where the ®rst two terms in each one of these
equations represent the homogeneous solution while

the remaining three correspond to the particular sol-
ution forced by the right-hand-side terms in Eqs. (23)±
(25). The relationships between b2, c2 and a2, and
between b �2, c

�
2 and a �2 are identical to Eqs. (21) and

(22) while the relationships between the coe�cients of
the particular solutions and the O(e ) coe�cients are
obtained upon substitution of the particular solutions

into Eqs. (23)±(25) and yield

a20 � b20 � ÿ�s
2
0 � Pr�R0 ÿ 1��
Pr�R0 ÿ 1� a1a

�
1;

c20 � ÿ 2s20
Pr�R0 ÿ 1�a1a

�
1

�27�

a22 � ÿp0a21; b22 � ÿq0a21; c22 � ÿs0a21 �28�
where p 0, q 0 and s 0 are given by the following
equations

p0 � �s
2
0�2 Pr� l� 2� � Pr�R0 ÿ 1�� � is0�2s20 � l�R0 ÿ Prÿ 2��

2f�l Pr�R0 ÿ 1� ÿ 2s20�Pr� l� 1�� � is0�l�R0 � Pr� ÿ 4s20�g
�29a�

q0 � �Pr� i2s0�
Pr

p0 �29b�

s0 � ls0�Pr� is0��3s0 ÿ i2�Pr� 1��
Prf�l Pr�R0 ÿ 1� ÿ 2s20�Pr� l� 1�� � is0�l�R0 � Pr� ÿ 4s20�g

�29c�

with equivalent relationships for their complex conjugate coe�cients a �22, b
�
22 and c �22.

The equations at order O(e 3) have the form

_X3 ÿ Pr�Y3 ÿ X3� � ÿdX1

dt
�30�

_Y3 ÿ �X3 ÿ Y3 ÿ �R0 ÿ 1�Z3�

� ÿdY1

dt
ÿ R0Z1 ÿ �R0 ÿ 1��X1Z2 � X2Z1� �31�

_Z3 ÿ l�X3 � Y3 ÿ Z3�

� ÿdZ1

dt
� l�X1Y2 � X2Y1� �32�

Eqs. (30)±(32) have the same homogeneous operator
as the O(e ) solutions, while the right-hand-side forcing
functions, which depend on the solutions evaluated at

lower orders, produce particular solutions at this
order, provided a solvability condition is ful®lled. The
solvability condition is obtained in order to prevent

terms of the form eis0t and eÿis0t on the right-hand-side
of Eqs. (30)±(32) to resonate the homogeneous oper-
ator, hence, forcing secular solutions of the form t eis0t

and t eÿis0t which are not bounded as t 41. Hence,
the coe�cients of these secular terms on the right-
hand-side of (30)±(32) must vanish, a requirement

which provides a constraint on the amplitudes at O(e )
in the form of an amplitude equation.

3.2. The Hopf bifurcation and limit cycle solution

The solvability condition is obtained by ®rst de-
coupling the system (30)±(32) and then requiring the

coe�cient of the resonating terms to vanish, a pro-
cedure which yields the amplitude equation in the
form

da

dt
� h21�e2 ÿ h32aa

��a �33�

and a similar equation for a�, where in Eq. (33)

a=ea1, a�=ea �1 and h21, h32 are complex coe�cients

which depend on Pr, s0, R0, p 0, q 0 and s 0. Their
lengthy expressions are skipped here. The coe�cient of
the non-linear term in Eq. (33) plays a role of a par-

ticular importance as it controls the direction of the
Hopf bifurcation which results from the post-transient
solution to Eq. (33). To observe this point further it is
convenient to represent Eq. (33) for the complex

amplitude, a, as a set of two equations for the absolute
value of the amplitude, r=vav, and its phase, y, in the
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form: a=r eiy, a�=r eÿiy, with aa�=r 2. Substituting
this representation in Eq. (33) yields

b
dr

dt
� �e2 ÿ jr2�r �34�

dy
dt
� m21e2 ÿm31r

2 �35�

where the following notation was introduced to sep-
arate between the real and imaginary parts of the

coe�cients in Eq. (33) h21=h 0
21+im21, h31=h 0

31+im31

and b=1/h 0
21, j=h 0

31/h
0
21.

Now it can be observed that when the coe�cient of

the non-linear term, j, is positive the Hopf bifurcation
is forward (i.e. supercritical) while a negative value of
j yields an inverse bifurcation (i.e. subcritical). The

coe�cient, j, was evaluated as a function of Pr for
l=8/3 allowing to establish that its value is negative
over the whole domain of validity of the Hopf bifur-

cation. The relaxation time, b, was also evaluated as a
function of Pr indicating that it is positive for Prr11/
3. Except for a range of Pr values slightly larger than
2.5 and slightly smaller than 11/3, where the relaxation

time is negative and the bifurcation seems to be super-
critical, the values of b are always positive. Note that
values of Pr R 11/3 are not consistent with the Hopf

bifurcation and with the solutions considered here, as
can be observed from the equation for R0 [see text fol-
lowing Eq. (22)]. For such values of Pr the solution of

this system decays to the stationary points. We can,
therefore, con®rm previously suggested results [2,9,10]
related to the Lorenz equations, that the Hopf bifur-

cation in this system is indeed subcritical. A further
analysis of the periodic solution (see the Appendix) at
slightly subcritical values of R shows that this solution
is unstable for e 2 < 0 (i.e. R< R0). We are, therefore,

faced with a periodic solution which exists only for
e 2 < 0 (i.e. R< R0) but it is not stable in this domain.
However, it is at this point where the further investi-

gation of the amplitude equation provides a marked
insight into the details of this Hopf bifurcation at the
point where the steady convective solutions loose their

stability but the resulting periodic solution unfolding
from the amplitude equation is unstable for R< R0

and does not exist when R> R0. The post-transient
amplitude solution is obtained from Eq. (34) in the

form r 2=e 2/j which clearly yields a real value for the
amplitude only when e 2 R 0 (i.e. R R R0) given the
already established fact that j < 0. The post-transient

frequency correction, _y, can be obtained for R R R0

by substituting the post-transient solution for r 2 into
(35) in the form _y � �m21 ÿm31=j�e2. The complete

solution for X, as an example, has, therefore, the form
X � 1� er1� exp�i�_y � s0�t� � exp�ÿi�_y � s0�t�� �O�e2�
(where r=er1). Clearly, r=er1 needs to be much

smaller than one for the asymptotic solution to be
accurate. In particular the initial conditions for r, i.e.

r0, needs to be much smaller than one, providing the
condition for accuracy of the weak non-linear solution
in the form r0<<1. Therefore, as the value of r0 ceases

to satisfy this condition its departure causes the accu-
racy of the weak non-linear solution to be lost.

3.3. Investigation of the transient solution to the
amplitude equation

To gain more insight into the nature of the limit
cycle and the subcriticality of the Hopf bifurcation
resulting from the amplitude equation, we undertake
further investigation of this equation. The major point

being the question of where exactly the supercritical
solution disappeared, what is the reason for its disap-
pearance and what more can we learn about the un-

stable subcritical limit cycle. This is done by working
out the transient solution of Eq. (34) which can be
easily obtained by a simple integration. Prior to that it

is convenient to introduce the following notation,
which simpli®es the analysis, w=j/b and x=e 2/j.
Clearly w< 0 over all the cases to be considered in

this analysis, while x> 0 for e 2 < 0 (subcritical con-
ditions), x< 0 for e 2 > 0 (supercritical conditions),
and x=0 for e 2=0 (critical conditions). By using this
notation the amplitude Eq. (34) takes the form

dr

dt
� w�xÿ r2�r �36�

The solution to eq. (36) is obtained by direct inte-

gration in the form r 2=x exp(2xwt )/[D+ exp(2xwt )]
for x$0 (e 2$0) and r 2=1/[2(wtÿD )] for x=0
(e 2=0), where D is a constant of integration to be
determined from the initial conditions. By introducing

the initial conditions r=r0 at t = 0, the transient sol-
utions take the form

r2 � x"
1ÿ

 
1ÿ x

r20

!
exp�ÿ2xwt�

# for x 6� 0

�e2 6� 0�

�37�

r2 � r20
�1� 2r20wt�

for x � 0 �e2 � 0� �38�

Clearly, both solutions (37) and (38) are valid at t= 0
and yield then r 2=r 20 which can be easily recovered by
substituting t= 0 in Eqs. (37) and (38). Therefore, the

question which arises is what happens at a later time
t > 0 which causes these solutions to disappear when
e 2 > 0 (i.e. when x< 0). To answer this question we
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separate the discussion into three cases as follows: (i)
the supercritical case, e 2 > 0 (x < 0), (ii) the subcriti-

cal case, e 2 < 0 (x > 0) and (iii) the critical case,
e 2=0 (x=0). In all three cases it should be remem-
bered that the value of w is always negative, while x is

negative, zero, or positive depending on whether the
conditions are supercritical, critical or subcritical, re-
spectively.

3.3.1. The supercritical case, ee 2 > 0 (xx < 0)
For this case the argument of the exponent in the

denominator of Eq. (37) and the value of x/r 20 are
always negative. Therefore, the denominator has at
t= 0, a negative value and this value increases until
such time that the denominator vanishes causing the

solution of r 2 to become in®nite. To evaluate this criti-
cal time, tcr, when the solution diverges we check the
condition when the denominator becomes equal to

zero, providing the following result

tcr � 1

2wx
ln

"
1ÿ x

r20

#
�39�

Obviously, since x < 0 in this case the argument of the
natural logarithm is always greater than one, therefore,

this critical time exists unconditionally in the super-
critical regime, causing the amplitude solution to
diverge, the signi®cance of which will be discussed

below.

3.3.2. The subcritical case, ee 2 < 0 (xx > 0)
For this case the argument of the exponent in the

denominator of Eq. (37) and the value of x/r 20 are
always positive. The denominator has at t= 0, a posi-
tive value and this value decreases or increases depend-

ing on the value of the ratio x/r 20. To establish the
conditions for the denominator of the solution (37) to
become zero and cause the solution to diverge we

evaluate the critical time in a similar way as for the
supercritical case, providing an identical result for tcr
as presented in Eq. (39). However, this time, under
subcritical conditions x> 0, the coe�cient of the natu-

ral logarithm is negative and its argument can be
greater or less than one depending on the value of x/
r 20. It is easier to notice the behaviour of the solution

in the subcritical case by presenting the equation for
the critical time corresponding to the subcritical case
in the following form, where we express explicitly the

fact that w< 0

tcr � ÿ 1

2 j w j x ln

"
1ÿ x

r20

#
�40�

From this equation it is clear that the condition for
existence of a critical time is that the argument of the

natural logarithm in Eq. (40) be positive and less than
one, i.e. 0 < (1ÿx/r 20) < 1. Otherwise, either the ln( )

function does not exist or the critical time becomes
negative having no physical signi®cance. The right-
hand-side of this inequality yields: x/r 20 > 0, which is

unconditionally satis®ed under subcritical conditions
(x > 0). The left-hand-side provides the following con-
dition for existence of a critical time: x/r 20 < 1. The

interesting fact coming out from this result is that a
critical time when the limit cycle solution diverges
exists in the subcritical case as well, subject to the con-

dition x/r 20 < 1.

3.3.3. The critical case, ee 2=0 (xx=0)
For the critical case we use Eq. (38) and evaluate

the condition for its denominator to vanish in order to
establish the existence of a critical time in this case as
well. One may expect it to exist on continuity argu-

ments as its exists conditionally in the subcritical case
and unconditionally in the supercritical case. From Eq.
(38) it can be easily evaluated as

tcr � ÿ 1

2wr20
for x � 0 �41�

The same result as presented in Eq. (41) can be
obtained by applying the limit as x 4 0 and using the

L'Hopital rule on Eq. (39) which is valid for both the
subcritical and supercritical conditions. This indicates
that the critical time tcr as a function of x varies

smoothly as it passes through the critical point x=0
(e 2=0).
The signi®cance of the existence of a critical time

when the limit cycle solution diverges is explained
simply in terms of the breakdown of the asymptotic
expansion which implicitly assumes (a) that the sol-
ution is local, around any one (but only one) of the

®xed points, and (b) that the expansion is valid around
the critical value of R, i.e. around R0. The second
assumption does not seem to be violated, at least not

for the slightly sub/supercritical case, however, the ®rst
assumption is strongly violated by a solution which
tends to in®nity, starting at subcritical conditions when

x/r 20 < 1. This condition implies r 20 > x, i.e. at a given
subcritical value of R, as long as the initial conditions
for r 20 are smaller than x (r 20 < x ) the solution decays,
spiralling towards the corresponding ®xed point

around which we applied the expansion. When the in-
itial conditions satisfy r 20=x a solitary limit cycle sol-
ution around this ®xed point exists (the terminology

`solitary limit cycle' is used to indicate that this limit
cycle can be obtained only at r 20=x ). As the initial
conditions move away from this ®xed point and

r 20 > x, the other ®xed point may a�ect the solution as
well, however, the asymptotic expansion used does not
allow it, and it is because of this reason that the sol-

P. Vadasz / Int. J. Heat Mass Transfer 43 (2000) 705±724712



ution diverges, indicating the breakdown of the expan-

sion used. While the divergence of the transient sol-

ution as t 4 tcr (i.e. for r 20 > x ) indicates the

breakdown of the assumed asymptotic expansion, it is

sensible to suggest a physical interpretation of this

result as the tendency of the solution to be repelled

away from the neighbourhood of the present ®xed

point (XS=YS=ZS=1) towards the other ®xed point

(XS=YS=ÿ1; ZS=1), or alternatively, its tendency to

orbit around both ®xed points, representing physically

a homoclinic explosion.

We can imagine a process of gradually increasing

the value of R towards R0 (i.e. decreasing the value of

x towards x=0). As we do so and we get closer to R0

a wider range of initial conditions falls into the cat-

egory which satis®es the solution's divergence con-
dition. To the question of what solution would,
therefore, exist when this condition is ful®lled one can

anticipate (with hindsight of the computation results
which are presented in the next section) that the sol-
ution may move towards the other ®xed point, indicat-

ing a homoclinic explosion, or wander around both
®xed points suggesting a chaotic solution.
Transforming the condition for this transition to

occur, from r 20 > x, to the original physical parameters
of the system by substituting the de®nitions of x and
e 2, one can observe that there is a value of R R R0,
say Rt, beyond which the transition occurs, which can

be expressed in the form

Rt � R0�1ÿ j j j r20� �42�

where the minus sign and the absolute value of j
appear in order to show explicitly that j < 0
(j=ÿ1.30959 in the present case). If R< Rt the sol-
ution decays, spiralling towards the corresponding
®xed point, at R=Rt we expect the solitary limit cycle

solution, and beyond this transitional value of R, i.e.
R > Rt, the solution moves away from this ®xed point
either (a) towards the other ®xed point, or (b) wanders

around both ®xed points before it stabilises towards
one of them, or (c) yields a chaotic behaviour by being
attracted to the non-wandering set (Lorenz attractor).

The present expansion cannot provide an answer to
select between these three possibilities. However, it is
important to stress that for any initial condition,

r 20<<1, which we choose, we can ®nd a value of
R R R0 which satis®es eq. (42). At that value of R we
expect to obtain a limit cycle solution and beyond it a
possible chaotic solution.

To present the analytical solutions graphically the
following rescaled variables relevant to Eqs. (37)±(41)
are introduced: rÄ=r/r0, tÄ=r 20vwvt and ~x � x=r20.
Substituting these rescaled variables into Eqs. (37)±(41)
transforms the solutions to the form in which they are
plotted in Figs. 2(a) and (b). Fig. 2(a) shows an

example of the amplitude solution [Eq. (37)] for three
values of ~x, corresponding to subtransitional con-
ditions (when ~x > 1), transitional conditions (when
~x � ~r2 � 1), and supertransitional conditions (when
~x < 1 and the solution diverges at tÄ=tÄcr). The variation
of the critical time tÄcr with ~x is presented in Fig. 2(b)
where one observes that the critical time tends to in®n-

ity as ~x � �x=r20�41. This fact suggests that it should
not be di�cult to recover numerically the solitary limit
cycle solution around ~x � �x=r20�11 as the time needed

for this solution to be destabilised becomes very large
in this neighbourhood (also see the Appendix), at least
as long as the present analysis is valid, i.e. for values

Fig. 2. (a) The amplitude solution for three values of ~x corre-

sponding to: (i) subtransitional conditions ~x=1.5; (ii) tran-

sitional conditions ~x � ~r2 � 1; and (iii) supertransitional

conditions ~x=0.5. (b) The variation of the critical time tÄcr,

when the amplitude solution diverges, as a function of ~x.
Super/subcritical domains as well as the hysteresis domain are

identi®ed. The conversion of the independent variable for the

top scale from ~x to e 2/r 20 corresponds to Pr= 10, i.e.

j=ÿ1.30959.
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of r 20 not too far away from one of the stationary

points (r 20<<1).

3.4. Hysteresis

Experimental and numerical results of transitions to
chaos in the Lorenz system [9,10,2] suggest the exist-
ence of an hysteresis mechanism which is described as

follows: when increasing the value of R gradually by
approaching R0 from below the transition to chaos
occurs at R=R0, while repeating the same procedure,
but approaching R0 from above, the transition from

chaos to the stationary solution occurs at a value of
R< R0. We provide an explanation of the hysteresis
phenomenon in connection with the transitional value

of R which is presented in Eq. (42). Let us imagine a
process of approaching R0 from below, say R < Rt.
This means that the initial conditions lead the solution

to one of the convective ®xed points, i.e. r= 0 (the
®xed points represent the steady solutions of convec-
tive rolls moving clockwise or anticlockwise). As we

gradually increase the value of R by starting the next

experiment (or numerical procedure) with initial con-
ditions taken from the post-transient previous solution

obtained at the slightly lower value of R, the new in-
itial conditions are very close to the ®xed point, i.e.
r 20 1 0 (they are not exactly at the ®xed point because

the post-transient values of the previous solution are
reached asymptotically, and at any ®nite time there is

a slight departure between the solution and the steady
state), and according to Eq. (42) the corresponding

transitional value Rt is very close to R0. However,
when one approaches R0 from above, the initial con-

ditions taken from the previous solution at a value of
R > R0 are quite large and far away from the ®xed

point (because they correspond to a chaotic solution
obtained at a higher value of R ), i.e. r 20 is far away
from 0. Therefore, in such a case it is expected to

obtain a chaotic solution for subcritical values of R
until the value of Rt is reached from above, which this

time it would be quite far away from R0, according to
Eq. (42). In graphical terms this process can be

Fig. 3. The critical time as a function of (RÿR0) for six values of initial conditions in terms of r 20. The transition from steady con-

vection to chaos (or backwards) is linked to the existence (disappearance) of this critical time, explaining the mechanism for hyster-

esis.
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observed in Fig. 2(b), where by moving towards R0

from the left with not negligible initial conditions (r 20 is

large) the transition is expected when the critical time
disappears, i.e. at values of R< R0, while by moving
towards R0 from the right and gradually decreasing

the value of x with r 2000, keeps the ratio x/r 20 greater
than one, since when x approaches the origin, x 4 0
and r 20 4 0 simultaneously. To make this explanation

more transparent, the variation of the explicit critical
time as a function of (RÿR0), by using Eq. (39) and
the de®nitions of x and e 2, is presented in Fig. 3 for

di�erent values of r 20. The disappearance of the critical
time at R=Rt is an indication that the amplitude does
not diverge, and therefore, a steady convective solution
can be obtained. From the ®gure it is evident that for

small values of r 20 (e.g. r 20=0.001), corresponding to
the forward transition from steady convective to
chaos, the asymptote of tcr (i.e. the point when the

critical time disappears) occurs very close to R=R0,
while for values of r 20 which are not so small, corre-
sponding to the reverse transition from chaos to steady

convection (e.g. r 20=0.5) the asymptote of tcr occurs at
values of R< R0 which are quite far away from R0.
This explains the reason for observing hysteresis in the

transition from steady convection to chaos and back-
wards, by using initial conditions corresponding to a
previous solution at a slightly di�erent values of R.

3.5. Breakdown of the asymptotic expansion

There are two possible ways for the breakdown of
an assumed asymptotic expansion

1. First, it can breakdown in a smooth and gradual
fashion, i.e. its solution becomes gradually less
accurate quantitatively, and the shape of the orbit
(e.g. for a Hopf bifurcation) departs gradually

from the shape of the accurate solution. This route
to the expansion breakdown, which still yields
qualitatively valid results while quantitatively the

error increases, applies when the underlying con-
dition for the validity of the expansion, i.e. e<<1, is
gradually violated. Actually, the accurate form of

this condition is ve 2v1/2<<1, in order to accommo-
date the subcritical domain for which e 2 < 0. In the
present case, the de®nition of e as e 2=(RÿR0)/R0

transforms this condition into vRÿR0v1/2<<R 1/2
0 . For

R3Rt we can substitute Eq. (42) into the latter con-
dition to yield vr0v<<vjvÿ1/2, and for j=ÿ1.30959,
corresponding to the present case, it implies
vr0v<<0.874. This shows that the condition for the
validity of the asymptotic expansion which orig-
inally constrained the values of R to be in the neigh-

bourhood of R0 is directly linked through the
asymptotic solution to a consequent constraint on
the initial conditions, r0.

2. Second, a sharp breakdown of the asymptotic
expansion which occurs as a singularity (or

divergence) in the solution. In some cases this
indicates a co-dimension-2 bifurcation. In the pre-
sent case this occurs as R4 Rt(r0). When R moves

slightly beyond Rt, i.e. R> Rt, the solution for r
diverges via a singularity, representing the tendency
of the solution to depart from the neighbourhood of

the present ®xed point towards the other convective
®xed point, or to orbit around both, therefore,
invalidating the asymptotic expansion used which,

by using the complete solution of X= 1+
er1[exp(i(y+s0)t )+exp(ÿi(y+s0)t )]+O(e 2), implies
explicitly that r=er1 is at a distance O(e ) from the
present ®xed point (XS=YS=ZS=1) but at a dis-

tance O(1) from the other ®xed point (XS=YS=ÿ1;
ZS=1). In addition the non-linear interaction
between the two solutions belonging to the two con-

vective ®xed points is prevented by the present
expansion. However, as long as R R Rt(r0) the
consistency of the expansion is not violated and

the only way for the breakdown of the asymptotic
expansion is smooth and gradual as formerly
indicated in (1) above.

4. Adomian's decomposition method of solution

Adomian's decomposition method [5,6], is applied to

solve the system of Eqs. (11)±(13). The method pro-
vides in principle an analytical solution in the form of
an in®nite power series for each dependent variable
and its excellent accuracy in solving non-linear

equations was demonstrated by Olek [12,13]. The sol-
ution follows Olek [13] and considers the following
more general dynamical system of equations

dXi

dt
�
Xm
j�1

bijXj �
Xm
l�1

Xm
j�1

aijlXjXl,

8i � 1, 2, . . . , m

�43�

given the initial conditions Xi (0), i = 1, 2, . . . , m. It
can be easily observed that the system of Eqs. (11)±
(13) is just a particular case of Eq. (43). A detailed
description of the method of solution is provided by

Vadasz and Olek [7,8].
Olek [12,13] used the decomposition method to solve

a variety of non-linear problems, some of which have

closed form analytical solutions and a comparison was
provided between the results obtained via the de-
composition method and either exact analytical or nu-

merical results. The conclusion from the comparison
was that the decomposition method provided results
which were accurate up to 14 signi®cant digits. Even
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when only three terms were kept in the decomposition
series solution of the Lotka±Volterra equations the

results agreed by at least ®ve signi®cant digits with a
corresponding numerical solution. The problem can
actually be solved to the desired accuracy by including

more terms in the computation of the series.
For the system of Eqs. (43) the non-linear terms are

of the rather simple X 2 form, so that very simple sym-

metry rules for the decomposition polynomials can be
used. If we denote L0d/dt, the formal solution of
(43) may be presented in the form

Xi�t� � Xi�0� �Lÿ1
"Xm

j�1
bijXj �

Xm
l�1

Xm
j�1

aijlXjXl

#
8i � 1, 2, . . . , m

�44�

where Lÿ10ft0 [ ] dt. According to the decomposition
method an expansion of the following form is assumed

Xi�t� �
X1
n�0

~Xin 8i � 1, 2, . . . , m �45�

Substituting (45) into (44) yields after rearranging the
products

Xi�t� �

Xi�0� �Lÿ1
"Xm

j�1
bij
X1
n�0

~Xjn �
Xm
l�1

Xm
j�1

aijl
X1
n�0

Xn
k�0

~Xjk
~Xl�nÿk�

#
8i � 1, 2, . . . , m �46�

The solution is ensured by requiring

~Xi0 � Xi�0� 8i � 1, 2, . . . , m �47a�

~Xi1 �Lÿ1
24Xm

j�1
bij ~Xj0 �

Xm
l�1

Xm
j�1

aijl
X0
k�0

~Xjk
~Xl�0ÿk�

35
8i � 1, 2, . . . , m

�47b�

~Xi2 �Lÿ1
24Xm

j�1
bij ~Xj1 �

Xm
l�1

Xm
j�1

aijl
X1
k�0

~Xjk
~Xl�1ÿk�

35
8i � 1, 2, . . . , m

�47c�

..

.

~Xin �Lÿ1
24Xm

j�1
bij ~Xj�nÿ1� �

Xm
l�1

Xm
j�1

aijl
Xnÿ1
k�0

~Xjk
~Xl�nÿkÿ1�

35
8i � 1, 2, . . . , m �47d �

After carrying out the integrations, the following sol-
ution is obtained

Xi�t� �
X1
n�0

ci, n
tn

n!
8i � 1, 2, . . . , m �48�

where

ci, 0 � Xi�0� 8i � 1, 2, . . . , m �49�

and the general term for nr1 is de®ned through the
following recurrence relationship

ci, n �
Xm
j�1

bijcj, �nÿ1� � �nÿ 1�!
Xm
l�1

Xm
j�1

Xnÿ1
k�0

aijl
cj, k
k!

cl, �nÿkÿ1�
�nÿ kÿ 1�! 8i � 1, 2, . . . , m �50�

The decomposition method does not assure, on its
own, existence and uniqueness of the solution.

Furthermore, the convergence of the series (48) is also
di�cult to assess a priori. In any case the practical
need to compute numerical values for the solution at

di�erent values of t requires the truncation of the
series and, therefore, its convergence needs to be estab-
lished in each particular case. To achieve this goal, the
decomposition method can be used as an algorithm for

the approximation of the dynamical response in a
sequence of time intervals [0, t1), [t1, t2), . . . , [tn ÿ 1, tn)
such that the solution at tp is taken as initial condition

in the interval [tp, tp + 1) which follows. This approach
has the following advantages: (i) in each time-interval
one can apply a theorem proved by ReÂ paci [14], which

states that the solution obtained by the decomposition
method converges to a unique solution as the number
of terms in the series becomes in®nite; and (ii) the ap-

proximation in each interval is continuous in time and
can be obtained with the desired accuracy correspond-
ing to the desired number of terms. The latter pro-
cedure is adopted in the computation of the solution

to Eqs. (11)±(13). Therefore, although the Adomian's
decomposition method provides an analytical form for
the solution, the practical need to obtain numerical

values from the in®nite power series, and consequently
the series truncation, and the practical procedure to
accomplish this task, transform the otherwise analyti-

cal results into a computational solution achieved up
to a ®nite accuracy. We will refer to the results belong-
ing to this solution's results as `computational results'
(as distinct from `numerical') to stress the fact that

they are obtained from an analytical solution which
needed to be computed up to a ®nite accuracy.
One can easily observe that Eqs. (11)±(13) are just a

particular case of Eqs. (43) with m= 3. This set of
equations provides the following non-zero coe�cients
for substitution in Eq. (43): b11=ÿPr; b12=Pr;

b21=R; b22=ÿ1; b33=ÿl; a213=ÿ(R ÿ 1); a312=l.
Except for these coe�cients all others are identically
zero. Therefore, the coe�cients ci,n, in Eq. (50) take
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Fig. 4. The computational results for the evolution of trajectories over time in the state space for two values of Rayleigh number

(in terms of R ). Initial conditions: X (0)=Y (0)=0.8 and Z (0)=0.92195 (solution data points not connected). (a) Projection of trajec-

tories onto the Y±X plane for R= 23. (b) Projection of post-transient trajectories onto the Y±X plane for R= 24.5. (c) Projection

of trajectories onto the Z±X plane for R= 23. (d) Projection of post-transient trajectories onto the Z±X plane for R= 24.5. (e)

Projection of trajectories onto the Z±Y plane for R= 23. (f) Projection of post-transient trajectories onto the Z±Y plane for

R= 24.5



Fig. 5. The computational results for the evolution of X(t ) in the time domain for three values of the Rayleigh number (in terms of

R ). (a) X as a function of time for R= 23; the solution stabilises to the ®xed point. (b) The inset of Fig. 7(a) detailing the oscil-

latory decay of the solution (data points are connected). (c) X as a function of time for R= 24.5; the solution exhibits chaotic

behaviour. (d) The inset of Fig. 7(c) detailing the chaotic solution. (e) X as a function of time for R= 24.41797; the solution is per-

iodic. (f) The inset of Fig. 7(e) detailing the periodic solution (data points are connected).
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the particular form

c1, n � ÿPr�c1, �nÿ1� ÿ c2, �nÿ1�� �51a�

c2, n � Rc1, �nÿ1� ÿ c2, �nÿ1�

ÿ �Rÿ 1�
Xnÿ1
k�0

�nÿ 1�!c1, kc3, �nÿkÿ1�
k!�nÿ kÿ 1�! �51b�

c3, n � ÿlc3, �nÿ1� � l
Xnÿ1
k�0

�nÿ 1�!c1, kc2, �nÿkÿ1�
k!�nÿ kÿ 1�! �51c�

In all computations 15 terms in the series and a time
interval of Dt = 10ÿ3 were used, and all computations

were performed up to a post-transient value of
t=tmax=210. All computations were carried out to
double-precision on an Apple Power Macintosh com-

puter (G3 upgrade) and the elapsed time for each com-
putation corresponding to a particular value of R and
a particular set of initial conditions was 012 s. While
the value of R as well as the initial conditions vary

from one computation to another, the value of Pr is
kept constant at Pr = 10. This value of Pr= 10 yields
the critical values: R0=470/19324.737, s 2

0=1760/

19392.63 and the following values for the amplitude
equation coe�cients [in Eq. (34)] j=ÿ1.30959 and
b=0.747609.

In order to compare the computational results to the
analytical ones obtained in Section 3 via the weak
non-linear theory we have to make sure that the initial

conditions for the computations are consistent with the
initial conditions corresponding to the weak non-linear
solution. It should be pointed out that the set of poss-
ible initial conditions in the weak non-linear solution

(37) and (38) is constrained because we did not include
the decaying solutions of the form a12(t )exp(s3t ) (with
s3 < 0 and real) in Eq. (20). Therefore, this constraint,

which is equivalent to setting (a12)t=0=0 and
(y )t=0=0, is kept valid for all computational results as
well. The present weak non-linear solution provides

the following conditions which are necessary and su�-
cient to ensure the consistency of the initial conditions
between the weak non-linear and computational sol-
utions

X �0� � Y �0� � 1� 2r0;

Z �0� � 1� s20
Pr�R0 ÿ 1� �X

�0� ÿ 1�

� 1� 2s20
Pr�R0 ÿ 1�r0 �52�

where X (0), Y (0) and Z (0) are the initial conditions for
X, Y and Z, respectively, and r0 is the initial condition
for r, as used in the weak non-linear solution in

Section 3. Furthermore, using Eq. (52) it is noted that
r0=(X (0)ÿ1)/2=(Y (0)ÿ1)/2. Clearly this yields negative

values of r0 if X (0) < 1 or Y (0) < 1. We, therefore,
extend the de®nition of r and allow it to take negative
values. This is equivalent to a phase shift in the limit

cycle solution of the form ~y � y� p and can be rigor-
ously justi®ed. For r0 this corresponds to a phase shift
~y0 � y0 � p � p, because y0=(y )t=0=0, implicitly in

the present case.

5. Results and discussion

Before presenting the comparison between the com-
putational and weak non-linear analytical results a
brief sequence of computational results are presented

in Figs. 4 and 5 to demonstrate the transition from a
steady convection to chaos. These results correspond
to initial conditions consistent with r0=ÿ0.1
(X (0)=Y (0)=0.8 and Z (0)=0.92195) and are presented
at two values of R, the ®rst at R = 23 just before the
transition to chaos occurs, and the second just after
the transition, at R= 24.5 < R0 (note that R0324.74).

The results in terms of projections of trajectories data
points on the Y±X, Z±X and Z±Y planes are presented
in Fig. 4, where the trajectories data points were not

connected. It can be observed from Fig. 4(a), (c) and
(e) that for R= 23, the solution's trajectories spiral
towards the ®xed point resulting in a steady convec-

tion. However, the post-transient solution's trajectories
at R= 24.5 presented in Fig. 4(b), (d) and (f) exhibit a
typical chaotic behaviour. The results for the same two

values of R in the time domain are presented in Fig. 5
for X as a function of t. The decay of the solution cor-
responding to R= 23 towards the steady state value
of X= 1 is clearly identi®ed in Fig. 5(a) and the inset

(where the data points are connected) presented in Fig.
5(b) highlights its oscillatory behaviour. On the other
hand, for R= 24.5, Fig. 5(c) shows a typical chaotic

result and the inset presented in Fig. 5(d) focuses on
the post-transient time domain 130 < t< 170. It is
worth emphasising the fact that the computational

results show a transition to chaos at a subcritical value
of R (the critical value of R0324.74). A comparison
between Figs. 5(a) and (c) at a common transient time
domain 0 < t < 50 shows that the envelope of the

function X(t ) converges for R= 23 (Fig. 5(a)) and
diverges for R= 24.5 (Fig. 5(c)). This suggests that
somewhere in-between R= 23 and R= 24.5 the envel-

ope of the function X(t ) will neither converge nor
diverge, producing a typical limit cycle. Looking for
this limit cycle provides the result presented in Fig.

5(e), where it is evident that the envelope of the func-
tion X(t ) does not converge nor diverge, and the inset
presented in Fig. 5(f) (where the data points are con-
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nected) demonstrates the periodic behaviour of the sol-

ution.

The objective in the presentation of the following
results is to demonstrate the appearance of this solitary

limit cycle at particular values of R prior to the tran-

sition to chaos (here a `solitary limit cycle' is used in

connection to the fact that it appears at a particular
value of R=Rt and only at this particular value of R;

no relationship to solitons is suggested) and to present

the computational values of R=Rt where this tran-

sition occurs [the analytical values of Rt were presented

in Section 3, see Eq. (42)] for di�erent initial con-
ditions (consistent with the weak non-linear solution).

It should be stressed that this limit cycle was obtained

computationally irrespective of whether the initial con-

ditions were consistent with the weak non-linear sol-

ution or not; the consistency is imposed only for
quantitative comparison purposes. A sequence of nu-

merous computations were performed in order to

evaluate these transitional R values.

The results are presented in Fig. 6 where the con-

tinuous curve represents the analytical solution

expressed by Eq. (42) while the dots represent the com-

putational results. The very good agreement between
the analytical and computational solutions in the

neighbourhood of the convective ®xed point (i.e.
vr0v<<1) is evident from Fig. 6.

As the initial conditions move away from the con-

vective ®xed point and the value of vr0v increases the

analytical solution departs from the computational
results, which recon®rms the validity of the weak non-
linear solution in the neighbourhood of a convective

®xed point and its breakdown far away from this
point. The relative di�erence between the two sol-
utions, i.e. the value of v(Rt/R0)analyt.ÿ(Rt/R0)comp.v/(Rt/

R0)comp., is insigni®cantly small (less than 1%) for
vr0v < 0.3, and equals 1.16% at r0=0.3, 2.2% at

r0=0.35, 3.97% at r0=0.4, 7.38% at r0=0.45, 9.6% at
r0=ÿ0.495, and 14.1% at r0=0.495. The departure
between the computational results and the analytical

ones is clearly not symmetrical with respect to r0=0.
While the weak non-linear solution is symmetrical with

respect to r0=0, due to its elliptical shape, there is no
reason to expect this symmetry from a computational
solution as one moves away from the ®xed point (the

symmetry is kept for vr0v<<1). The maximum value of
vr0v for which we could obtained results and still be
consistent with the weak non-linear solution (around

one of the ®xed points) was r0=20.5. Actually at
r0=ÿ0.5 the corresponding initial conditions are

X (0)=Y (0)=0 and Z (0)=0.609756 which lie on the Z-
axis that is included on the stable manifold of the ori-
gin. Therefore, the computational results obtained for

this set of initial conditions lead naturally to the origin
producing the motionless solution. Furthermore, in the
neighbourhood of r0=20.5 one expects to ®nd the

homoclinic orbit. In order to evaluate the solitary limit
cycle as we approach r0=ÿ0.5 we evaluated the com-

putational solution at r0=ÿ0.495. Another interesting
result from the computations is the fact that it was
relatively very easy to detect the solitary limit cycle

when the initial conditions were close to the convective
®xed point, i.e. around r0=0. There, the critical time is
very large, as established via the weak non-linear

analysis, and if the value of R is su�ciently close to Rt

the limit cycle appears and persists. The relatively easy

computational recovery of the solitary limit cycle does
not imply that this limit cycle is stable. On the con-
trary, a slight variation of the initial conditions causes

a change in the value of Rt and consequently the limit
cycle disappears. It can be recovered again by a further

adjustment of the value of R [see Eq. (42)]. Naturally,
in this neighbourhood the accuracy in estimating the
value of Rt is somewhat compromised because of the

same reason. Nevertheless, if the maximum time for
presenting the solution (i.e. tmax) is su�ciently large
this accuracy problem around r0=0 can be resolved.

In our case, with tmax=210, the results provided accu-
rate values of Rt. However, as we move away from the

neighbourhood of r0=0 by using initial conditions
further away from the convective ®xed point, it
becomes more and more di�cult to detect the solitary

limit cycle, and more computations are needed by
modifying the value of R closer and closer to Rt.

Fig. 6. Transitional subcritical values of Rayleigh number in

terms of Rt/R0 as a function of the initial conditions r0. A

comparison between the weak non-linear solution (Ð analyti-

cal) and the computational results (. computational).
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Fig. 7. Comparison between the computational and analytical results for the solitary limit cycle in terms of post-transient trajec-

tories data points projected onto the Y±X plane, for di�erent values of r0. (a) Initial conditions: r0=ÿ0.1. (b) Initial conditions:
r0=ÿ0.15.
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Fig. 8. Comparison between the computational and analytical results of the solitary limit cycle for initial conditions far away from

the convective ®xed point and corresponding to r0=ÿ0.495. (a) Trajectories data points projected onto the Y±X plane. (b)

Trajectories data points projected onto the Z±X plane. (c) Trajectories data points projected onto the Z±Y plane.
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While detecting the solitary limit cycle becomes more

di�cult as the initial conditions move away from the
convective ®xed point, the accuracy of the value of Rt

once the limit cycle was detected becomes extremely

high. For example, at r0=ÿ0.2 the limit cycle
appeared at R=Rt=23.474475752. The need to use 11
signi®cant digits in order to obtain the limit cycle sol-

ution over the whole time domain just emphasises the
di�culty of detecting the limit cycle as one moves

away from the convective ®xed point and the associ-
ated accuracy in evaluating Rt. This is also an indi-
cation that this limit cycle becomes less and less stable

as one departs from the neighbourhood of the convec-
tive ®xed point. As one moves even further away,

more signi®cant digits are required in order to estab-
lish the value of Rt and detect the limit cycle over the
whole time domain, and when this process reaches the

limit of over 14 digits, which corresponds to the
double-precision computation, the limit cycle cannot
be detected for the whole time domain selected.

All computational orbits evaluated yielded post-tran-
sient solutions which persisted for a very long time

(attempting to increase the value of tmax beyond
tmax=210 signi®cantly, did not change the periodic
result), except for the orbits corresponding to r0=ÿ0.3
and r0=ÿ0.495 where the solutions stabilised to the
convective ®xed point X=Y=Z = 1 (or experienced a

homoclinic explosion if the value of R was slightly
increased) after a relatively long period of time during
which the periodic orbit persisted.

A further comparison between the computational
and analytical results is presented in Figs. 7 and 8. The
solitary limit cycle corresponding to the complete weak

non-linear solution is presented in Fig. 7 together with
the corresponding computational solution in terms of

trajectories data points projected on the Y±X plane.
The trajectories data points were not connected. Fig.
7(a) corresponds to initial conditions of r0=ÿ0.1 while

Fig. 7(b) corresponds to r0=ÿ0.15. In both cases it
can be observed that the analytical and computational

limit cycles are quite close. The corresponding projec-
tions on the Z±X and Z±Y planes (not presented here)
show that the analytical and computational solutions

almost overlap. Similarly, the limit cycle solutions cor-
responding to values of vr0v smaller than 0.1 show that
the analytical and computational results overlap and

are, therefore, not presented graphically here. On the
other hand, the solitary limit cycle solutions corre-

sponding to r0=ÿ0.495, i.e. quite far away from the
convective ®xed point, are presented in Fig. 8 in terms
of trajectories data points projected on the Y±Z, Z±X

and Z±Y planes. The comparison between the analyti-
cal and computational limit cycle results presented in
Fig. 8 show a marked departure between the two sol-

utions, not only in the quantitative sense as presented
by the deviation of the computational value of Rt from

its predicted analytical value (see Fig. 6), but also
qualitatively their shapes are substantially di�erent.

While the analytical periodic orbit maintains its ellipti-
cal shape similar regardless of r0, the computational
results show that as the solitary limit cycle approaches

conditions consistent with the homoclinic orbit its
shape is altered considerably (the shape of the homo-
clinic orbit is by far di�erent than that of an ellipse,

see Vadasz [15]).

6. Conclusions

The investigation of the route to chaos in a ¯uid
layer heated from below was presented by using the
weak non-linear theory and Adomian's decomposition
method to provide solutions to a truncated Galerkin

representation of the governing equations, which is
identical to Lorenz equations. Both the analytical and
computational results con®rmed the transition from

steady convection to chaos via a solitary limit cycle at
a subcritical value of the Rayleigh number. The sub-
critical transition was explained by investigating the

transient amplitude solution results obtained via the
weak non-linear theory. This investigation sheds some
light in explaining the experimentally well-known

phenomenon of hysteresis. Comparison between the
computational and analytical results shows very good
quantitative as well as qualitative agreement in the
neighbourhood of any one (but only one) of the con-

vective steady solutions. The weak non-linear solution
diverges as the initial conditions move away from the
neighbourhood of the convective ®xed point. Under

these conditions the asymptotic expansion used breaks
down as it cannot accommodate a solution which is
a�ected by both convective ®xed points because these

points are far apart in terms of the expansion used. It
is suggested that another expansion be used which
brings both ®xed points closer to each other. Then the

possibility of a co-dimension-2 bifurcation where the
limit cycle corresponding to each one of the convective
®xed points resonate each other should be investigated.
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Appendix A. Linear stability analysis of the amplitude

solution

A linear stability analysis of the amplitude solution
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is presented in this Appendix in order to clarify the
reason for the relatively easy computational recovery

of the `solitary limit cycle' around R 1 Rt, when
r 20<<1. The post-transient solution of the amplitude
Eq. (36), rb=2x 1/2, is taken as the basic solution of

which stability is investigated. Introducing small per-
turbations around this basic solution in the form:
r=rb+dr (1), where d<<1, and substituting this form of

perturbed solution in to Eq. (36) yields an equation for
the perturbation in the form

dr�1�

dt
� ÿ2wr2br�1� �A1�

Introducing in (A1) the basic solution r 2b=x and the
absolute value of w to indicate explicitly the already
established fact that w < 0 yields

dr�1�

dt
� 2 j w j xr�1� �A2�

The solution to Eq. (A2) has the form

r�1� � A exp�2 j w j xt� �A3�

indicating that for R< R0 (i.e. x > 0) the basic sol-

ution rb is unstable. However, at R=Rt < R0, where
the limit cycle is detected x=r 20 [see complete discus-
sion following Eq. (41) and Fig. 2(a)]. Replacing the

latter relationship into Eq. (A3) yields

r�1� � A exp�2 j w j r20t� �A4�

From Eq. (A4) it is evident that for r 20<<1 (with
vwv=1.7517) the relative growth rate of a perturbation
around the basic solution in the neighbourhood of Rt

is very small, i.e. (2vwvr 20)<<1, and the time needed for
the limit cycle to be destabilised becomes very long,
thus allowing its computational recovery.

References

[1] E.N. Lorenz, Deterministic non-periodic ¯ows, J.

Atmos. Sci. 20 (1963) 130±141.

[2] C. Sparrow, The Lorenz Equations: Bifurcations,

Chaos, and Strange Attractors, Springer-Verlag, New

York, 1982.

[3] A.J. Lichtenberg, M.A. Liberman, Regular and Chaotic

Dynamics, 2nd ed., Springer-Verlag, New York, 1992.

[4] W.V.R. Malkus, Non-periodic convection at high and

low Prandtl number, Mem. Soc. R. Sci. Liege IV (6)

(1972) 125±128.

[5] G. Adomian, A review of the decomposition method in

applied mathematics, J. Math. Anal. Appl. 135 (1988)

501±544.

[6] G. Adomian, Solving Frontier Problems in Physics: The

Decomposition Method, Kluwer, Dordrecht, 1994.

[7] P. Vadasz, S. Olek, Weak turbulence and chaos for low

Prandtl number gravity driven convection in porous

media, Transport in Porous Media 37(1) 1999 69±91.

[8] P. Vadasz, S. Olek, Transitions and chaos for free con-

vection in a rotating porous layer, Int. J. Heat Mass

Transfer 14 (11) (1998) 1417±1435.

[9] Y. Wang, J. Singer, H.H. Bau, Controlling chaos in a

thermal convection loop, J. Fluid Mechanics 237 (1992)

479±498.

[10] P. Yuen, H.H. Bau, Rendering a subcritical Hopf bifur-

cation supercritical, J. Fluid Mechanics 317 (1996) 91±

109.

[11] P. Vadasz, Local and global transitions to chaos and

hysteresis in a porous layer heated from below,

Transport in Porous Media 1999 (in press).

[12] S. Olek, An accurate solution to the multispecies

Lotka±Volterra equations, SIAM Review 36 (1994)

480±488.

[13] S. Olek, Solution to a class of nonlinear evolution

equations by Adomian's decomposition method.

Manuscript in preparation, 1997.

[14] A. ReÂ paci, Non-linear dynamical systems: on the accu-

racy of Adomian's decomposition method, Appl. Math.

Lett. 3 (1990) 35±39.

[15] P. Vadasz, On the homoclinic orbit for convection in a

¯uid layer heated from below, Int. J. Heat and Mass

Transfer 42 (1999) 3557±3561.

P. Vadasz / Int. J. Heat Mass Transfer 43 (2000) 705±724724


